Morphisms of presheaves + sheaves (see Har II. 1)

let X be a topological space.

Def: If
$$\widehat{\mathcal{F}}$$
 and \mathscr{U} are (presheaves on X, a morphism
 $\mathcal{Y}: \widehat{\mathcal{F}} \to \mathscr{Y}$ consists of morphisms
 $\mathcal{Y}(u): \widehat{\mathcal{F}}(u) \to \mathscr{Y}(u)$

4 is an isomorphism if it has a two-sided inverse, i.e. some morphism 4 s.t. 4. 4. and 4.4 are the identity on every open set U.

Claim: If 4: F→& is a morphism of (pre)sheaves, There is an induced map of stalks

$$\mathsf{Y}_{\mathsf{p}}: \mathcal{F}_{\mathsf{p}} \longrightarrow \mathcal{Y}_{\mathsf{p}}$$

for all $P \in X$. (See HWI). Note that by construction, for any open UCX, and $F(u) \longrightarrow H(u)$ $P \in U$, This diagram $f_p \longrightarrow f_p$ The additional requirements for a presheaf to be a sheaf allows us to check many properties locally:

Prop: A morphism of sheaves $f: \mathcal{F} \to \mathcal{F}$ is an isomorphism $\Leftrightarrow \mathcal{Y}_p: \mathcal{F}_p \to \mathcal{F}_p$ is an isomorphism for each $P \in X$.

Pf: (=>:) Follows from def of Yp.

(⇐:) Assume 4p is an isomorphism for every PEX.

It suffices to show $\Psi(u): \widehat{F}(u) \to \mathscr{G}(u)$ is an isomorphism for every open $U \subseteq X$.

For injectivity, take
$$se \mathcal{F}(u) s.t. \mathcal{Y}(u)(s) = 0.$$

Then $\mathcal{Y}(u)(s)_p = 0$ for each $p \in U.$
Thus, $S_p = 0$ for each $p \in U.$
Thus, for each P , there is
some open $V_p \subseteq U$ s.t.
 $s|_{V_p} = 0.$ Since U is covered
by the V_p , the sheaf condition tells us that
 $s = 0$ in $\mathcal{F}(u)$

For surjectivity, let se
$$\mathcal{B}(\mathcal{U})$$
. Then for each $p \in \mathcal{U}$,
 $\mathcal{Y}_p: \mathcal{F}_p \rightarrow \mathcal{A}_p$ is surjective, so \mathcal{F} tp $\in \mathcal{F}_p$ s.t.

$$\Psi_{p}(t_{p}) = s_{p}$$
 (the germ of s at p)

let tp be represented by t(P) on a neighborhood Vp of p. Then $\Psi(t(P))|_p = Sp_s$ so replacing Vp by a possibly smaller neighborhood, we can assume

Thus, U is now covered by open sets Vp, and on each Vp, there is a section $t(P) \in \mathcal{F}(V_p)$. We need to check they are equal on intersections.

Let
$$Q \in U$$
, and $t(Q) \in \mathcal{F}(V_Q)$. Then
 $t(Q)|_{V_p \cap V_Q}$ and $t(P)|_{V_p \cap V_Q}$

both get sent, via Ψ , to $s|_{v_p \cap v_q}$. By injectivity of Ψ , they must be equal (on $V_p \cap V_q$).

Thus, the sheaf property tells us there is some $t \in \mathcal{F}(U)$ s.t. $t|_{V_{P}} = t(P)$ for each $P \in U$.

We just need to check $\Psi(t) = s$. For each V_p , we know that $\Psi(t)|_{V_p} = \Psi(t(p)) = s|_{V_p}$.

Thus, $(\Psi(t) - s)|_{V_p} = 0 \quad \forall \quad V_p$, which forms on open cover of U.

Thus, $\Psi(t) - S = O = 2 \Psi(t) = S. \Box$

We've defined an isomorphism of meaves in The obvious way, but injectivity and surjectivity are a bit more subtle. We first need the following:

Def: let $\Psi: \mathcal{F} \rightarrow \mathcal{Y}$ be a morphism of presheaves. We define the <u>presheaf kernel</u> of Ψ to be $U \mapsto \ker(\Psi(u))$, the pr<u>esheaf cokernel</u> to be $U \longmapsto \operatorname{coker}(\Psi(u))$, and the <u>presheaf image</u> to be $U \longmapsto \operatorname{im}(\Psi(u))$.

Remark: If F and G are sheaves, the presheaf kernel is a sheaf, but the image and cokernel may not be.

However, There is a way to turn any presheaf (uniquely) into a sheaf as follows.

Prop/def: let
$$\widehat{F}$$
 be a presheaf on X . There is a sheaf
 \widehat{F}^+ and a morphism $\widehat{\Theta}: \widehat{F} \to \widehat{F}^+$ s.t. for any
sheaf \widehat{S} and any morphism $\widehat{\Psi}: \widehat{F} \to \widehat{J}$,
There is a unique morphism $\widehat{\Psi}: \widehat{F}^+ \to \widehat{S}$ s.t.
 $\widehat{\Psi} = \widehat{\Psi} \circ \widehat{\Theta}.$ $\widehat{\widehat{F}} \to \widehat{F}^+$
 $\widehat{\Psi} = \widehat{F}^+$
 $\widehat{\Psi} = \widehat{F}^+$

Pf/construction: Construct
$$\widehat{F}^+$$
 as follows. For any
open set U, define $\widehat{F}^+(U)$ to be the set of
functions $s : U \longrightarrow \bigcup_{p \in U} \widehat{F}_p$ s.t.

1.) for each $p \in U$, $s(P) \in \mathcal{F}_p$, and

- 2.) for each PEU, thure's a neighborhood V of P contained in U and te F(V) s.t. for all QeV, the germ to of t at Q is s(Q).
- The restriction maps are just restrictions of functions.

The presheat conditions follow immediately.

For the sheaf conditions, let $\{V_i\}$ be an open covering of U. Suppose $s \in \mathcal{F}^+(U)$ s.t. $s|_{V_i} = 0 \quad \forall i$. Since restriction is given by restriction of functions, this means that $s(P) = 0 \quad \forall P \in U$, so s = 0.

Now assume $\forall i$ we have $s_i \in \mathcal{F}^+(V_i)$ s.t. $S_i|_{v_i \cap v_j} = S_j|_{v_i \cap v_j}$ for each i, j. Again, since each s_i is a function, there is a unique function $s \in \mathcal{F}^+(U)$ that has the requisite restrictions. It satisfies the desired properties by e.g. choosing the neighborhood of P to be contained within one of the V;.

The morphism $\theta: \mathcal{F} \to \mathcal{F}^+$ is given as follows: For $U \subseteq X$ open, and $s \in \mathcal{F}(U)$, $\theta(s) = (P \mapsto S_P)$.

If $Y: \mathcal{F} \longrightarrow \mathcal{J}$ is a morphism to a sheaf \mathcal{J} , we need to describe the morphism $Y: \mathcal{F}^+ \longrightarrow \mathcal{J}:$

For $U \subseteq X$, $s \in \mathcal{F}^+(U)$, cover U by obser sets V_i s.t. for each i there is a $t_i \in \mathcal{F}(V_i)$ s.t. the germ $t_0 = s(Q)$ for $Q \in V_i$.

Then since \mathcal{G} is a sheaf, and $\mathcal{G}(t_i)$ agree on the overlaps, $\exists t \in \mathcal{G}(u)$ s.t. $t \mid_{V_i} = \mathcal{G}(t_i)$. Set $\mathcal{G}(s) = t$. It's straightformard to check that this is a morphism, and by construction it must be unique.

The iniqueness of 7th follows from This universal property.D

We'll also give another definition of F⁺ which is perhaps more intuitive:

(Alternate) def: let F be a presheaf on X. We can define the sheaf if ication of F as follows. For $U \subseteq X$ open,

$$\begin{aligned} \mathcal{F}^{+}(\mathcal{U}) &= \left\{ \begin{pmatrix} S_{p} \end{pmatrix} \in \prod_{p \in \mathcal{U}} \mathcal{F}_{p} \middle| (\mathcal{X}) \right\} \\ \text{where } (\mathcal{X}) &= \text{for every } p \in \mathcal{U} \quad \mathcal{F} \quad a \text{ neighborhood} \\ V_{p} &\subseteq \mathcal{U} \quad and \quad s \in \mathcal{F}(V_{p}) \quad such \text{ that} \\ \mathcal{V}_{p} &\subseteq \mathcal{U} \quad and \quad s \in \mathcal{F}(V_{p}) \quad such \text{ that} \\ \mathcal{V} \quad \mathcal{Q} \in V_{p}, \text{ the germent } s \text{ at } \mathcal{Q} \\ &= Is \quad s_{q}. \end{aligned}$$

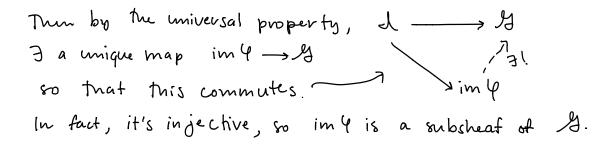
Note: 1) If \mathcal{F} is already a sheaf then $\mathcal{F}^{+} \cong \mathcal{F}$, and 2.) $\mathcal{F}_{p}^{+} = \mathcal{F}_{p} \quad \forall \quad P \in X.$ (Check !!,)

Subsheaves, kernels, images, and quotients

A <u>subsheaf</u> of a sheaf \mathcal{F} is a sheaf \mathcal{F}' such That for each open $U \subseteq X$, $\mathcal{F}'(u)$ is a subgroup of $\mathcal{F}(u)$, and the restriction maps are induced by those of \mathcal{F} .

Note that since the presheat kernel of a map $\varphi: \mathcal{F} \to \mathcal{G}$ of sheaves is a meaf, it is a subsheaf of \mathcal{F} . We'll call it simply the kernel of \mathcal{Y} , or ker \mathcal{Y} , and say \mathcal{Y} is injective if ker $\mathcal{Y} = O$, i.e. if $\mathcal{Y}(\mathcal{U})$ is injective for each $\mathcal{U} \subseteq X$.

Define the image of φ , im φ , to be the sheafification of the presheaf image of φ (call it I).



4 is <u>surjective</u> if im 4 = 4. Note that it may <u>not</u> be the case that 4(u) is surjective for each U!!!i.e. injectivity can be checked on open sets, but not surjectivity.

If \mathcal{F}' is a subsheaf of a sheaf \mathcal{F} , define the <u>quotient sheaf</u> $\mathcal{F}'_{\mathcal{F}'}'$ to be the sheaf if is cation of the presheaf $\mathcal{U} \mapsto \mathcal{F}(\mathcal{U})'_{\mathcal{F}'}(\mathcal{U})$.

This the stalk of F/z, at P is FP/J'p.

Continuous maps and sheaves

Let $f: X \longrightarrow Y$ be a continuous map between topological spaces.

If
$$\mathcal{F}$$
 is a sheaf on X, the direct image of \mathcal{F} ,
denoted $\mathcal{F}_*\mathcal{F}$ is defined
 $(\mathcal{F}_*\mathcal{F})(\mathcal{U}) = \mathcal{F}(\mathcal{F}^{-1}(\mathcal{U}))$

for any open $U \subseteq Y$. (f * F is commonly called The pushforward of F.)

Ex: let $p \in Y$ a fixed point, and define $f: X \rightarrow Y$ to be the constant map $f(x) = p \forall x \in X$.

If
$$\mathcal{F}$$
 is a sheaf on X , then for $U \subseteq Y$,
 $f_* \mathcal{F}(U) = \begin{cases} \mathcal{F}(x) \text{ if } p \in U & (called a) \\ 0 \text{ if } p \notin U. & skyscraper sheaf \end{cases}$

More generally, for any open set disjoint from the image of a map the direct image of any sheat will be 0 on that set.

On the other hand, if \mathcal{A} is a theat on Y, how do we get a sheaf on X? If $U \subseteq X$ is open, f(U) isn't necessarily, so we can't use an analogous definition. Instead, we take the limit of sections over open sets containing f(U). i.e.:

Def: The inverse image sheaf f'y on X is the sheafification of the presheaf

$$(\longmapsto \lim_{V \ge f(u)} \mathcal{J}(V)$$

The inverse image is a lot harder to define, but it's way easier to see what the stalk is at a point:

$$(f^{-1}\mathcal{A})_{x} = \lim_{u \neq x} f^{-1}\mathcal{A}(u) = \lim_{v \neq f(x)} \mathcal{A}(v) = \mathcal{A}_{f(x)}$$

Def: If $Z \subseteq X$ is a subspace of X, and $i: Z \to X$ the inclusion map, and \mathcal{F} a sheaf on X, then the <u>restriction of \mathcal{F} to</u> Z is the sheaf $i^{-1} \mathcal{F}$, and is denoted $\mathcal{F}|_{Z}$.

Ex: If
$$x \in X$$
 is a point and f a sheaf on X .
What is $f|_{E^{x3}}$?

$$\mathcal{F}|_{\{x\}} = \lim_{u \ge \{x\}} \mathcal{F}(u) = \mathcal{F}_{x}.$$

That is, the restriction of a sheat to a point is the stalk at that point.

Note: f⁻¹ & is different than the pull-back f* &, which we'll define later.